**This is an old revision of the document!**

Pre-Installation

The first step in creating Slackermedia is to install Slackware and configure it for your machine. It is strongly advised that a user be familiar with GNU, Linux, BSD, or UNIX before attempting to build a Slackermedia system. However, it is hardly unheard of (and in fact, arguably best) for someone to start their Linux journey with Slackware. This chapter guides you through the install process and highlights potential points of confusion.

There is no way for this book to anticipate every problem possible, but there are many resources online to help a new Linux or new Slackware user through the installation process, not the least of which is the official Slackware documentation at http://docs.slackware.com. Some support for installation is available via http://linuxquestions.org, which is a forum run by volunteers, so be patient, friendly, and do as much research as possible before asking questions so that the answers that you do get are not redundant to your efforts.

If you are looking into using Slackermedia for a large user base and you require paid support, contact the author to discuss options.

Off-the-Shelf Linux Systems

Computers are mostly sold with an operating system already installed and configured by the OEM vendor. If that is the experience that you seek, then you should purchase computers from http://zareason.com or http://system76.com, or any vendor offering any kind of pre-installed Linux. Dell offers several laptops and desktops loaded with Ubuntu Linux, but and Zareason accepts requests for a Slackware install. Whether or not a vendor agrees to pre-install Slackware, at least when you purchase from a Linux-oriented vendor, you know that the hardware is tested for compatibility, which makes the install process nearly trivial.

Hardware Selection

If you do not have the money or inclination to purchase a pre-approved Linux computer, you can install Slackware yourself. You can even build your own workstation from parts, if you are looking for higher-than-usual performance, or you just happen to enjoy building your own PC.

If you are a starving artist with strong technical tendencies, then you can even rescue a computer from a dumpster (either figuratively or literally), fix it up as needed, and then install Linux.

If you have never installed an operating system, you will probably find it far easier than you might imagine, as long as you choose the right hardware. Most problems in a Linux install occur due to closed source drivers, so choosing hardware that is designed to make a user's life easy saves you time and effort.

The Linux kernel has become famous for its hardware support, but it never hurts to research what you are about to purchase with real-world case-studies. There are a handful of sites on the internet dedicated to analyzing how different hardware works with Linux, which works best as a boolean determination of compatibility; it can accurately be measured whether something does or does not work with Linux. Degrees, however, are harder to ascertain, since one person's requirements for performance might be drastically different than another person's.

The best way to make sure hardware works to the degree needed from a multimedia artist is to test the hardware. Burning a liveCD of a multimedia distribution and taking that disc to a computer store and rebooting the target machine into Linux is a very good way to judge hardware Linux compatibility and performance.

While liveCDs run slower than running an OS from the harddrive, it should still give the user a good idea of severe problems, and the user should make some allowances for the fact that the test is being performed on a liveCD.

If specific multimedia peripherals are required to work as well, they can be judged separate from the workstation itself. Regardless of what computer is purchased, the Linux kernel either does or does not have support for a peripheral. An online search or tests at home on any computer available should reveal whether or not an interface or peripheral is recognized and usable on Linux.

The computer market can be confusing and it is often difficult to know what actually has a pragmatic significance in multimedia. In other words, all things being equal, where in a computer system should a buyer spend money? Some general things to keep in mind:

CPU

There was a time when every last megahertz really did matter to the end user, but lately most CPUs have reached a mostly-equal plateau in speed. Brands and model names advertise different features but generally speaking any general-purpose computer AMD or Intel 64-bit CPU do as well with multimedia as another. “General purpose” excludes chips designed specifically for netbooks and other ultra-portable or low-power devices.

CPUs process data, so the jobs that benefit most from multiple CPUs or very fast CPUs are processing-heavy activities such as video compression, non-realtime special effect rendering, realtime audio effect generation, audio effect rendering (sometimes called “freezing” in a DAW), large image conversion, audio file conversion or compression, and so on. Very broadly speaking, it could be said that the CPU matters most on jobs that involve pressing a button and then getting up and going for a cup of coffee in anticipation of having to wait for the job to be complete. Depending on what kind of art you make, some jobs literally last for days, while others may only be a few seconds past the point at which a typical user becomes bored with waiting.

If you are going to do to do graphically-intensive work such as 3d modeling, digital painting, or video editing, then go with a mid-range CPU and spend more money on a good graphics processor.

If you are going to do audio work, put your money into CPU and RAM, and spend less on the graphics card.

Finally, do not be confused by branding. Intel and AMD are basically the same in function and performance from a practical standpoint. The brand should never be a deciding factor.

RAM

How much RAM you have dictates, largely, what size projects your system can comfortably handle. Audacity. for instance, might be responsive with a 30-second spot but will feel sluggish with longer projects, or projects with a great many tracks. GIMP will do well on web graphics but struggle with for-print graphics. This is simply because information is moving in and out of RAM; upgrade the amount of RAM, and the applications function more consistently.

The speed of RAM is less talked about in consumer electronics, but the overall responsiveness of the system is greatly dependent upon it. The faster the RAM, the faster the information can be moved from RAM to CPU for processing, so given the choice, purchase the faster RAM. On the other hand, if money is an issue, try to find a happy medium between storage space and speed.

The old adage that “you can never have too much RAM” has not held up all that well with time, at least not on a normal desktop or laptop (render farms and RAM disks are notable exceptions). Realistically, you can only be doing so many things at once, so unless you just open up every large project simply to spite your computer, some RAM ends up net being used. So get a lot of RAM, but if price is an issue, only get a little more than you anticipate needing. If you have money to spend, get some extra RAM for comfort, but don't go overboard unless you are actively building a render farm.

Hard drive

Hard drives are quite reasonably priced, so more is probably better, and financially possible for all but the most severest of budgets. Less affordable are Solid State Drives (SSD), but the performance increase is so remarkable that it is strongly suggested that you purchase an SSD drive for at least part of your system; since it only needs to house the applications, it can be a small drive (32gb or 64gb will do, considering that the entire Slackware distribution, uncompressed, is only about 10gb). 16gb or An ideal, but still affordable, setup would be one SSD drive to hold the binary, executable applications that run your computer (and the multimedia applications that you run on a daily basis), one standard hard drive to house all of your data as well as the system data, and a third standard hard drive to perform constant backups.

Graphics Card

A powerful graphics card is quite important if you do video and graphics work. For serious visual multimedia, it is very likely that you need to install a proprietary graphics card driver since the companies do not release their driver code as free software. This is unfortunate and taints an otherwise open source system, but the performance increase can be measured in orders of magnitude.

If you are not doing intensive video or graphics work, then probably your only concern with a graphics card is whether it handles the basic visual needs of your system. For these low-end to mid-range cards, the drivers can come from Nvidia, ATI, or Intel, or from the Linux (actually Xorg) developers. Performance can usually be gauged in tests at any computer store.

Whether you're looking for a high-performance card or a mid-range card, you can always determine the official support by going to the chipset manufacturer's website and finding a download (or lack thereof) for the card. If the download is there, you are at least guaranteed performance for that chipset, on the kernel or kernels for which the code was released.

Otherwise, look on the X.org website to see if they have a driver for the card you are looking to buy (or buy along with a laptop or pre-built system), and take note of what kind of performance results are being seen with those drivers on that card.

Not out of allegiance for a particular brand, the best bet for graphics are pragmatically Intel for light graphic work (photos, still image compositing, some 3d titling, light video editing) and Nvidia for moderate-to-high graphic work (serious 3d modeling, complex video editing, animation, video compositing, large-format photo work). Nvidia is infamously proprietary and secretive, but they do actively maintain their code, and it performs well. Developers hate them, but in terms of results, they are the high-end graphics to use.

Currently, it is recommended that you avoid AMD (formerly ATI) graphic cards.

GPU Tests

Buying a GPU is nearly as complicated as buying a computer. GPU cards have processor clock speeds, RAM, RAM speed, bus speed, fans, a variety of possible monitor outputs, and may even require additional power to run.

Actually using a GPU notwithstanding, the best way to get a feel for GPU performance is to keep a finger on the pulse of the GPU market, especially within either the visual effects or the gamer community. The VFX community would presumably be the most apropos group to follow, but they tend to be less verbose about the gear they use than the gamer community. Since so much of gaming depends on realtime GPU performance, and gamers are some of the most demanding computer geeks alive, and they tend to take pride in their computer builds. Consequently, when gamers rave about a GPU, you know that the GPU is worth the money.

The general-purpose multimedia community is usually less reliable, since so many of the users in that space don't actually know what a GPU or a CPU does. They generally know a lot about video editing or 3d modeling, but not much about the technical side of what makes it all happen.

A GPU's performance is defined primarily by how much video memory it has, and how fast its processor is. Look at a card's specs, and find out the clock speed and the amount of memory, and use these numbers to determine what to expect from the card.

A few unscientific tests to determine the real-world performance of a graphics card, should you have the opportunity to test it in a computer store before buying, is to go burn an image of Porteus, a portable live Linux distribution based on Slackware. Take the CD (or USB drive, if you're savvy) to a computer store and put it into any display computer and reboot.

<!–WRAP tip> For a full explanation of how to use Porteus, see the website http://klaatu.multics.com/porteus. </WRAP–

>

-Launch KDE's System Settings and turn on Desktop Effects in the Desktop pane.

  1. Navigate to the All Effects tab and turn them all on.
  2. Close System Settings (saving your changes). If any of the effects are not able to be activated, then that GPU is obviously limited (or its driver is).
  3. Assuming all the effects can be enabled, open a few windows (Dolphin, Konsole, konqueror, and so on) and play a video in Dragon; while the video is playing, use alt-tab to switch between the windows.
  4. If the video and its reflection continues to play smoothly through the animated switching, the card will more than likely be a suitable card for at least moderate to heavy video work and other multimedia creation.
  5. Continue to add more videos, and continue to alt-tab to test the limits of the card. Take note of flickering, stuttering, and other distortion.


If you have time and the skill for Blender, test it out on the computer. If Blender performs well, then the card is probably well-suited for any other visual work you have in mind for it.